
asdf: another system definition facility

This manual describes asdf, a system definition facility for Common Lisp programs and
libraries.
asdf Copyright c© 2001-2004 Daniel Barlow and contributors
This manual Copyright c© 2001-2004 Daniel Barlow and contributors
Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the “Software”), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

i

Table of Contents

1 Using asdf to load systems 1
1.1 Downloading asdf . 1
1.2 Setting up asdf . 1
1.3 Setting up a system to be loaded . 1
1.4 Loading a system . 2

2 Defining systems with defsystem 3
2.1 The defsystem form . 3
2.2 A more involved example . 4
2.3 The defsystem grammar . 4

2.3.1 Serial dependencies . 5
2.3.2 Source location . 5

3 The object model of asdf 6
3.1 Operations . 6

3.1.1 Predefined operations of asdf . 6
3.1.2 Creating new operations . 7

3.2 Components . 8
3.2.1 Common attributes of components . 8

3.2.1.1 Name . 8
3.2.1.2 Version identifier . 9
3.2.1.3 Required features . 9
3.2.1.4 Dependencies . 9
3.2.1.5 pathname . 10
3.2.1.6 properties . 11

3.2.2 Pre-defined subclasses of component. 11
3.2.3 Creating new component types . 12

4 Error handling . 13

5 Compilation error and warning handling . . . 14

6 Getting the latest version 15

7 TODO list . 16

8 missing bits in implementation 17

ii

9 Inspiration . 19
9.1 mk-defsystem (defsystem-3.x) . 19
9.2 defsystem-4 proposal . 19
9.3 kmp’s “The Description of Large Systems”, MIT AI Memu 801

. 19

Concept Index . 20

Function and Class Index . 21

Variable Index . 22

Chapter 1: Using asdf to load systems 1

1 Using asdf to load systems

This chapter describes how to use asdf to compile and load ready-made Lisp programs and
libraries.

1.1 Downloading asdf

Some Lisp implementations (such as SBCL and OpenMCL) come with asdf included already,
so you don’t need to download it separately. Consult your Lisp system’s documentation. If
you need to download asdf and install it by hand, the canonical source is the cCLan CVS
repository at http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/cclan/asdf/.

1.2 Setting up asdf

The single file ‘asdf.lisp’ is all you need to use asdf normally. Once you load it in a
running Lisp, you’re ready to use asdf. For maximum convenience you might want to have
asdf loaded whenever you start your Lisp implementation, for example by loading it from
the startup script or dumping a custom core – check your Lisp implementation’s manual
for details.

The variable asdf:*central-registry* is a list of “system directory designators”1. A
system directory designator is a form which will be evaluated whenever a system is to be
found, and must evaluate to a directory to look in. You might want to set or augment
central-registry in your Lisp init file, for example:

(setf asdf:*central-registry*
(list* ’*default-pathname-defaults*

#p"/home/me/cl/systems/"
#p"/usr/share/common-lisp/systems/"
asdf:*central-registry*))

1.3 Setting up a system to be loaded

To compile and load a system, you need to ensure that a symbolic link to its system definition
is in one of the directories in *central-registry*2.

For example, if #p"/home/me/cl/systems/" (note the trailing slash) is a member
of *central-registry*, you would set up a system foo that is stored in a directory
‘/home/me/src/foo/’ for loading with asdf with the following commands at the shell (this
has to be done only once):

$ cd /home/me/cl/systems/
$ ln -s ~/src/foo/foo.asd .

1 When we say “directory” here, we mean “designator for a pathname with a supplied DIRECTORY
component”.

2 It is possible to customize the system definition file search. That’s considered advanced use, and covered
later: search forward for *system-definition-search-functions*. See Chapter 2 [Defining systems
with defsystem], page 3.

http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/cclan/asdf/

Chapter 1: Using asdf to load systems 2

1.4 Loading a system

The system foo is loaded (and compiled, if necessary) by evaluating the following form in
your Lisp implementation:

(asdf:operate ’asdf:load-op ’foo)

That’s all you need to know to use asdf to load systems written by others. The rest of
this manual deals with writing system definitions for Lisp software you write yourself.

Chapter 2: Defining systems with defsystem 3

2 Defining systems with defsystem

This chapter describes how to use asdf to define systems and develop software.

2.1 The defsystem form

Systems can be constructed programmatically by instantiating components using make-
instance. Most of the time, however, it is much more practical to use a static defsystem
form. This section begins with an example of a system definition, then gives the full
grammar of defsystem.

Let’s look at a simple system. This is a complete file that would usually be saved as
‘hello-lisp.asd’:

(defpackage hello-lisp-system
(:use :common-lisp :asdf))

(in-package :hello-lisp-system)

(defsystem "hello-lisp"
:description "hello-lisp: a sample Lisp system."
:version "0.2"
:author "Joe User <joe@example.com>"
:licence "Public Domain"
:components ((:file "packages")

(:file "macros" :depends-on ("packages"))
(:file "hello" :depends-on ("macros"))))

Some notes about this example:

• The file starts with defpackage and in-package forms to make and use a package
expressly for defining this system in. This package is named by taking the system
name and suffixing -system - note that it is not the same package as you will use for
the application code.

This is not absolutely required by asdf, but helps avoid namespace pollution and so is
considered good form.

• The defsystem form defines a system named "hello-lisp" that contains three source
files: ‘packages’, ‘macros’ and ‘hello’.

• The file ‘macros’ depends on ‘packages’ (presumably because the package it’s in is
defined in ‘packages’), and the file ‘hello’ depends on ‘macros’ (and hence, transitively
on ‘packages’). This means that asdf will compile and load ‘packages’ and ‘macros’
before starting the compilation of file ‘hello’.

• The files are located in the same directory as the file with the system definition. asdf
resolves symbolic links before loading the system definition file and stores its location
in the resulting system1. This is a good thing because the user can move the system
sources without having to edit the system definition.

1 It is possible, though almost never necessary, to override this behaviour.

Chapter 2: Defining systems with defsystem 4

2.2 A more involved example

Let’s illustrate some more involved uses of defsystem via a slightly convoluted example:

(defsystem "foo"
:version "1.0"
:components ((:module "foo" :components ((:file "bar") (:file"baz")

(:file "quux"))
:perform (compile-op :after (op c)

(do-something c))
:explain (compile-op :after (op c)
(explain-something c)))

(:file "blah")))

The method-form tokens need explaining: essentially, this part:

:perform (compile-op :after (op c)
(do-something c))

:explain (compile-op :after (op c)
(explain-something c))

has the effect of

(defmethod perform :after ((op compile-op) (c (eql ...)))
(do-something c))

(defmethod explain :after ((op compile-op) (c (eql ...)))
(explain-something c))

where ... is the component in question; note that although this also supports :before
methods, they may not do what you want them to – a :before method on perform ((op
compile-op) (c (eql ...))) will run after all the dependencies and sub-components have
been processed, but before the component in question has been compiled.

2.3 The defsystem grammar

system-definition := (defsystem system-designator {option}*)

option := :components component-list
| :pathname pathname
| :default-component-class
| :perform method-form
| :explain method-form
| :output-files method-form
| :operation-done-p method-form
| :depends-on ({simple-component-name}*)
| :serial [t | nil]
| :in-order-to ({dependency}+)

component-list := ({component-def}*)

component-def := simple-component-name
| (component-type name {option}*)

Chapter 2: Defining systems with defsystem 5

component-type := :module | :file | :system | other-component-type

dependency := (dependent-op {requirement}+)
requirement := (required-op {required-component}+)

| (feature feature-name)
dependent-op := operation-name
required-op := operation-name | feature

2.3.1 Serial dependencies

If the :serial t option is specified for a module, asdf will add dependencies for each each
child component, on all the children textually preceding it. This is done as if by :depends-
on.

:components ((:file "a") (:file "b") (:file "c"))
:serial t

is equivalent to
:components ((:file "a")

(:file "b" :depends-on ("a"))
(:file "c" :depends-on ("a" "b")))

2.3.2 Source location

The :pathname option is optional in all cases for systems defined via defsystem, and in
the usual case the user is recommended not to supply it.

Instead, asdf follows a hairy set of rules that are designed so that
1. find-system will load a system from disk and have its pathname default to the right

place
2. this pathname information will not be overwritten with *default-pathname-

defaults* (which could be somewhere else altogether) if the user loads up the ‘.asd’
file into his editor and interactively re-evaluates that form.

If a system is being loaded for the first time, its top-level pathname will be set to:
• The host/device/directory parts of *load-truename*, if it is bound
• *default-pathname-defaults*, otherwise

If a system is being redefined, the top-level pathname will be
• changed, if explicitly supplied or obtained from *load-truename* (so that an updated

source location is reflected in the system definition)
• changed if it had previously been set from *default-pathname-defaults*

• left as before, if it had previously been set from *load-truename* and *load-
truename* is currently unbound (so that a developer can evaluate a defsystem form
from within an editor without clobbering its source location)

Chapter 3: The object model of asdf 6

3 The object model of asdf

asdf is designed in an object-oriented way from the ground up. Both a system’s structure
and the operations that can be performed on systems follow a protocol. asdf is extensible
to new operations and to new component types. This allows the addition of behaviours: for
example, a new component could be added for Java JAR archives, and methods specialised
on compile-op added for it that would accomplish the relevant actions.

This chapter deals with components, the building blocks of a system, and operations, the
actions that can be performed on a system.

3.1 Operations

An operation object of the appropriate type is instantiated whenever the user wants to do
something with a system like

• compile all its files
• load the files into a running lisp environment
• copy its source files somewhere else

Operations can be invoked directly, or examined to see what their effects would be with-
out performing them. FIXME: document how! There are a bunch of methods specialised
on operation and component type that actually do the grunt work.

The operation object contains whatever state is relevant for this purpose (perhaps a list
of visited nodes, for example) but primarily is a nice thing to specialise operation methods
on and easier than having them all be EQL methods.

Operations are invoked on systems via operate.

[Generic function]operate operation system &rest initargs
[Generic function]oos operation system &rest initargs

operate invokes operation on system. oos is a synonym for operate.

operation is a symbol that is passed, along with the supplied initargs, to make-
instance to create the operation object. system is a system designator.

The initargs are passed to the make-instance call when creating the operation object.
Note that dependencies may cause the operation to invoke other operations on the
system or its components: the new operations will be created with the same initargs
as the original one.

3.1.1 Predefined operations of asdf

All the operations described in this section are in the asdf package. They are invoked via
the operate generic function.

(asdf:operate ’asdf:operation-name ’system-name {operation-options ...})

[Operation]compile-op &key proclamations
This operation compiles the specified component. If proclamations are supplied, they
will be proclaimed. This is a good place to specify optimization settings.

When creating a new component type, you should provide methods for compile-op.

Chapter 3: The object model of asdf 7

When compile-op is invoked, component dependencies often cause some parts of the
system to be loaded as well as compiled. Invoking compile-op does not necessarily
load all the parts of the system, though; use load-op to load a system.

[Operation]load-op &key proclamations
This operation loads a system.
The default methods for load-op compile files before loading them. For parity, your
own methods on new component types should probably do so too.

[Operation]load-source-op
This operation will load the source for the files in a module even if the source files
have been compiled. Systems sometimes have knotty dependencies which require that
sources are loaded before they can be compiled. This is how you do that.
If you are creating a component type, you need to implement this operation - at least,
where meaningful.

[Operation]test-system-version &key minimum
Asks the system whether it satisfies a version requirement.
The default method accepts a string, which is expected to contain of a number of
integers separated by #\. characters. The method is not recursive. The component
satisfies the version dependency if it has the same major number as required and each
of its sub-versions is greater than or equal to the sub-version number required.

(defun version-satisfies (x y)
(labels ((bigger (x y)

(cond ((not y) t)
((not x) nil)
((> (car x) (car y)) t)
((= (car x) (car y))
(bigger (cdr x) (cdr y))))))
(and (= (car x) (car y))

(or (not (cdr y)) (bigger (cdr x) (cdr y))))))

If that doesn’t work for your system, you can override it. I hope you have as much
fun writing the new method as #lisp did reimplementing this one.

[Operation]feature-dependent-op
An instance of feature-dependent-op will ignore any components which have a
features attribute, unless the feature combination it designates is satisfied by
features. This operation is not intended to be instantiated directly, but other
operations may inherit from it.

3.1.2 Creating new operations

asdf was designed to be extensible in an object-oriented fashion. To teach asdf new tricks,
a programmer can implement the behaviour he wants by creating a subclass of operation.

asdf’s pre-defined operations are in no way “privileged”, but it is requested that devel-
opers never use the asdf package for operations they develop themselves. The rationale
for this rule is that we don’t want to establish a “global asdf operation name registry”, but
also want to avoid name clashes.

Chapter 3: The object model of asdf 8

An operation must provide methods for the following generic functions when invoked
with an object of type source-file: FIXME describe this better
• output-files

• perform The perform method must call output-files to find out where to put its
files, because the user is allowed to override

• output-files for local policy explain

• operation-done-p, if you don’t like the default one

3.2 Components

A component represents a source file or (recursively) a collection of components. A system
is (roughly speaking) a top-level component that can be found via find-system.

A system designator is a string or symbol and behaves just like any other component
name (including with regard to the case conversion rules for component names).

[Function]find-system system-designator &optional (error-p t)
Given a system designator, find-system finds and returns a system. If no system is
found, an error of type missing-component is thrown, or nil is returned if error-p
is false.
To find and update systems, find-system funcalls each element in the *system-
definition-search-functions* list, expecting a pathname to be returned. The
resulting pathname is loaded if either of the following conditions is true:
• there is no system of that name in memory
• the file’s last-modified time exceeds the last-modified time of the system in mem-

ory

When system definitions are loaded from ‘.asd’ files, a new scratch package is created
for them to load into, so that different systems do not overwrite each others operations.
The user may also wish to (and is recommended to) include defpackage and in-
package forms in his system definition files, however, so that they can be loaded
manually if need be.
The default value of *system-definition-search-functions* is a function that
looks in each of the directories given by evaluating members of *central-registry*
for a file whose name is the name of the system and whose type is ‘asd’. The first
such file is returned, whether or not it turns out to actually define the appropriate
system. Hence, it is strongly advised to define a system foo in the corresponding file
foo.asd.

3.2.1 Common attributes of components

All components, regardless of type, have the following attributes. All attributes except
name are optional.

3.2.1.1 Name

A component name is a string or a symbol. If a symbol, its name is taken and lowercased.
The name must be a suitable value for the :name initarg to make-pathname in whatever
filesystem the system is to be found.

Chapter 3: The object model of asdf 9

The lower-casing-symbols behaviour is unconventional, but was selected after some con-
sideration. Observations suggest that the type of systems we want to support either have
lowercase as customary case (Unix, Mac, windows) or silently convert lowercase to upper-
case (lpns), so this makes more sense than attempting to use :case :common as argument
to make-pathname, which is reported not to work on some implementations

3.2.1.2 Version identifier

This optional attribute is used by the test-system-version operation. See Section 3.1.1
[Predefined operations of asdf], page 6. For the default method of test-system-version, the
version should be a string of intergers separated by dots, for example ‘1.0.11’.

3.2.1.3 Required features

Traditionally defsystem users have used reader conditionals to include or exclude specific
per-implementation files. This means that any single implementation cannot read the entire
system, which becomes a problem if it doesn’t wish to compile it, but instead for example
to create an archive file containing all the sources, as it will omit to process the system-
dependent sources for other systems.

Each component in an asdf system may therefore specify features using the same syntax
as #+ does, and it will (somehow) be ignored for certain operations unless the feature
conditional is a member of *features*.

3.2.1.4 Dependencies

This attribute specifies dependencies of the component on its siblings. It is optional but
often necessary.

There is an excitingly complicated relationship between the initarg and the method that
you use to ask about dependencies

Dependencies are between (operation component) pairs. In your initargs for the compo-
nent, you can say

:in-order-to ((compile-op (load-op "a" "b") (compile-op "c"))
(load-op (load-op "foo")))

This means the following things:

• before performing compile-op on this component, we must perform load-op on a and
b, and compile-op on c,

• before performing load-op, we have to load foo

The syntax is approximately

(this-op {(other-op required-components)}+)

required-components := component-name
| (required-components required-components)

component-name := string
| (:version string minimum-version-object)

Side note:

Chapter 3: The object model of asdf 10

This is on a par with what ACL defsystem does. mk-defsystem is less general: it has an
implied dependency

for all x, (load x) depends on (compile x)

and using a :depends-on argument to say that b depends on a actually means that

(compile b) depends on (load a)

This is insufficient for e.g. the McCLIM system, which requires that all the files are
loaded before any of them can be compiled]

End side note

In asdf, the dependency information for a given component and operation can be queried
using (component-depends-on operation component), which returns a list

((load-op "a") (load-op "b") (compile-op "c") ...)

component-depends-on can be subclassed for more specific component/operation types:
these need to (call-next-method) and append the answer to their dependency, unless they
have a good reason for completely overriding the default dependencies

(If it weren’t for CLISP, we’d be using a LIST method combination to do this transpar-
ently. But, we need to support CLISP. If you have the time for some CLISP hacking, I’m
sure they’d welcome your fixes)

3.2.1.5 pathname

This attribute is optional and if absent will be inferred from the component’s name, type
(the subclass of source-file), and the location of its parent.

The rules for this inference are:

(for source-files)

• the host is taken from the parent
• pathname type is (source-file-type component system)

• the pathname case option is :local
• the pathname is merged against the parent

(for modules)

• the host is taken from the parent
• the name and type are NIL

• the directory is (:relative component-name)

• the pathname case option is :local
• the pathname is merged against the parent

Note that the DEFSYSTEM operator (used to create a “top-level” system) does addi-
tional processing to set the filesystem location of the top component in that system. This
is detailed elsewhere, See Chapter 2 [Defining systems with defsystem], page 3.

The answer to the frequently asked question "how do I create a system definition where
all the source files have a .cl extension" is thus

(defmethod source-file-type ((c cl-source-file) (s (eql (find-system ’my-sys))))
"cl")

Chapter 3: The object model of asdf 11

3.2.1.6 properties

This attribute is optional.

Packaging systems often require information about files or systems in addition to that
specified by asdf’s pre-defined component attributes. Programs that create vendor packages
out of asdf systems therefore have to create “placeholder” information to satisfy these
systems. Sometimes the creator of an asdf system may know the additional information
and wish to provide it directly.

(component-property component property-name) and associated setf method will allow
the programmatic update of this information. Property names are compared as if by EQL,
so use symbols or keywords or something.

3.2.2 Pre-defined subclasses of component

[Component]source-file
A source file is any file that the system does not know how to generate from other
components of the system.

Note that this is not necessarily the same thing as “a file containing data that is
typically fed to a compiler”. If a file is generated by some pre-processor stage (e.g.
a ‘.h’ file from ‘.h.in’ by autoconf) then it is not, by this definition, a source file.
Conversely, we might have a graphic file that cannot be automatically regenerated,
or a proprietary shared library that we received as a binary: these do count as source
files for our purposes.

Subclasses of source-file exist for various languages. FIXME: describe these.

[Component]module
A module is a collection of sub-components.

A module component has the following extra initargs:

• :components the components contained in this module
• :default-component-class All child components which don’t specify their class

explicitly are inferred to be of this type.
• :if-component-dep-fails This attribute takes one of the values :fail, :try-

next, :ignore, its default value is :fail. The other values can be used for
implementing conditional compilation based on implementation *features*, for
the case where it is not necessary for all files in a module to be compiled.

• :serial When this attribute is set, each subcomponent of this component is as-
sumed to depend on all subcomponents before it in the list given to :components,
i.e. all of them are loaded before a compile or load operation is performed on it.

The default operation knows how to traverse a module, so most operations will not
need to provide methods specialised on modules.

module may be subclassed to represent components such as foreign-language linked
libraries or archive files.

[Component]system
system is a subclass of module.

Chapter 3: The object model of asdf 12

A system is a module with a few extra attributes for documentation purposes; these
are given elsewhere. See Section 2.3 [The defsystem grammar], page 4.
Users can create new classes for their systems: the default defsystem macro takes a
:classs keyword argument.

3.2.3 Creating new component types

New component types are defined by subclassing one of the existing component classes and
specializing methods on the new component class.

FIXME: this should perhaps be explained more throughly, not only by example ...
As an example, suppose we have some implementation-dependent functionality that we

want to isolate in one subdirectory per Lisp implementation our system supports. We create
a subclass of cl-source-file:

(defclass unportable-cl-source-file (cl-source-file)
())

A hypothetical function system-dependent-dirname gives us the name of the subdi-
rectory. All that’s left is to define how to calculate the pathname of an unportable-cl-
source-file.

(defmethod component-pathname ((component unportable-cl-source-file))
(let ((pathname (call-next-method))

(name (string-downcase (system-dependent-dirname))))
(merge-pathnames
(make-pathname :directory (list :relative name))
pathname)))

The new component type is used in a defsystem form in this way:
(defsystem :foo

:components
((:file "packages")
...
(:unportable-cl-source-file "threads"
:depends-on ("packages" ...))
...
)

Chapter 4: Error handling 13

4 Error handling

It is an error to define a system incorrectly: an implementation may detect this and signal
a generalised instance of SYSTEM-DEFINITION-ERROR.

Operations may go wrong (for example when source files contain errors). These are
signalled using generalised instances of OPERATION-ERROR.

Chapter 5: Compilation error and warning handling 14

5 Compilation error and warning handling

ASDF checks for warnings and errors when a file is compiled. The variables *compile-file-
warnings-behaviour* and *compile-file-errors-behavior* controls the handling of
any such events. The valid values for these variables are :error, :warn, and :ignore.

Chapter 6: Getting the latest version 15

6 Getting the latest version

1. Decide which version you want. HEAD is the newest version and usually OK, whereas
RELEASE is for cautious people (e.g. who already have systems using asdf that they
don’t want broken), a slightly older version about which none of the HEAD users have
complained.

2. Check it out from sourceforge cCLan CVS:
cvs -d:pserver:anonymous@cvs.cclan.sourceforge.net:/cvsroot/cclan login

(no password: just press 〈Enter〉)
cvs -z3 -d:pserver:anonymous@cvs.cclan.sourceforge.net:/cvsroot/cclan co

-r RELEASE asdf

or for the bleeding edge, instead
cvs -z3 -d:pserver:anonymous@cvs.cclan.sourceforge.net:/cvsroot/cclan co

-A asdf

If you are tracking the bleeding edge, you may want to subscribe to the cclan-commits
mailing list (see http://sourceforge.net/mail/?group_id=28536) to receive commit
messages and diffs whenever changes are made.

For more CVS information, look at http://sourceforge.net/cvs/?group_id=28536.

http://sourceforge.net/mail/?group_id=28536
http://sourceforge.net/cvs/?group_id=28536

Chapter 7: TODO list 16

7 TODO list

* Outstanding spec questions, things to add
** packaging systems
*** manual page component?
** style guide for .asd files
You should either use keywords or be careful with the package that you evaluate def-

system forms in. Otherwise (defsystem partition ...) being read in the cl-user package will
intern a cl-user:partition symbol, which will then collide with the partition:partition symbol.

Actually there’s a hairier packages problem to think about too. in-order-to is not a
keyword: if you read defsystem forms in a package that doesn’t use ASDF, odd things
might happen

** extending defsystem with new options
You might not want to write a whole parser, but just to add options to the existing

syntax. Reinstate parse-option or something akin
** document all the error classes
** what to do with compile-file failure
Should check the primary return value from compile-file and see if that gets us any closer

to a sensible error handling strategy
** foreign files
lift unix-dso stuff from db-sockets
** Diagnostics
A “dry run” of an operation can be made with the following form:

(traverse (make-instance ’<operation-name>)
(find-system <system-name>)
’explain)

This uses unexported symbols. What would be a nice interface for this functionality?

Chapter 8: missing bits in implementation 17

8 missing bits in implementation

** all of the above
** reuse the same scratch package whenever a system is reloaded from disk
** rules for system pathname defaulting are not yet implemented properly
** proclamations probably aren’t
** when a system is reloaded with fewer components than it previously had, odd things

happen
we should do something inventive when processing a defsystem form, like take the list

of kids and setf the slot to nil, then transfer children from old to new list as they’re found
** traverse may become a normal function
If you’re defining methods on traverse, speak up.
** a lot of load-op methods can be rewritten to use input-files
so should be.
** (stuff that might happen later)
*** david lichteblau’s patch for symlink resolution?
*** Propagation of the :force option. “I notice that
(oos ’compile-op :araneida :force t)
also forces compilation of every other system the :araneida system depends on. This is

rarely useful to me; usually, when I want to force recompilation of something more than
a single source file, I want to recompile only one system. So it would be more useful to
have make-sub-operation refuse to propagate :force t to other systems, and propagate
only something like :force :recursively.

Ideally what we actually want is some kind of criterion that says to which systems (and
which operations) a :force switch will propagate.

The problem is perhaps that ‘force’ is a pretty meaningless concept. How obvious is it
that load :force t should force compilation? But we don’t really have the right depen-
dency setup for the user to compile :force t and expect it to work (files will not be loaded
after compilation, so the compile environment for subsequent files will be emptier than it
needs to be)

What does the user actually want to do when he forces? Usually, for me, update for
use with a new version of the lisp compiler. Perhaps for recovery when he suspects that
something has gone wrong. Or else when he’s changed compilation options or configuration
in some way that’s not reflected in the dependency graph.

Other possible interface: have a ’revert’ function akin to ’make clean’
(asdf:revert ’asdf:compile-op ’araneida)

would delete any files produced by ’compile-op ’araneida. Of course, it wouldn’t be able
to do much about stuff in the image itself.

How would this work?
traverse
There’s a difference between a module’s dependencies (peers) and its components

(children). Perhaps there’s a similar difference in operations? For example, (load "use")

Chapter 8: missing bits in implementation 18

depends-on (load "macros") is a peer, whereas (load "use") depends-on (compile
"use") is more of a ‘subservient’ relationship.

Chapter 9: Inspiration 19

9 Inspiration

9.1 mk-defsystem (defsystem-3.x)

We aim to solve basically the same problems as mk-defsystem does. However, our archi-
tecture for extensibility better exploits CL language features (and is documented), and we
intend to be portable rather than just widely-ported. No slight on the mk-defsystem au-
thors and maintainers is intended here; that implementation has the unenviable task of
supporting pre-ANSI implementations, which is no longer necessary.

The surface defsystem syntax of asdf is more-or-less compatible with mk-defsystem,
except that we do not support the source-foo and binary-foo prefixes for separating
source and binary files, and we advise the removal of all options to specify pathnames.

The mk-defsystem code for topologically sorting a module’s dependency list was very
useful.

9.2 defsystem-4 proposal

Marco and Peter’s proposal for defsystem 4 served as the driver for many of the features in
here. Notable differences are:
• We don’t specify output files or output file extensions as part of the system.

If you want to find out what files an operation would create, ask the operation.
• We don’t deal with CL packages

If you want to compile in a particular package, use an in-package form in that file (ilisp
/ SLIME will like you more if you do this anyway)

• There is no proposal here that defsystem does version control.
A system has a given version which can be used to check dependencies, but that’s all.

The defsystem 4 proposal tends to look more at the external features, whereas this one
centres on a protocol for system introspection.

9.3 kmp’s “The Description of Large Systems”, MIT AI
Memu 801

Available in updated-for-CL form on the web at http://world.std.com/~pitman/Papers/Large-Systems.html
In our implementation we borrow kmp’s overall PROCESS-OPTIONS and concept to

deal with creating component trees from defsystem surface syntax. [this is not true right
now, though it used to be and probably will be again soon]

http://world.std.com/~pitman/Papers/Large-Systems.html

Concept Index 20

Concept Index

C
component . 8

O
operation . 6

S

system . 8

system designator . 8

system directory designator . 1

Function and Class Index 21

Function and Class Index

C
compile-op . 6

F
feature-dependent-op . 7
find-system . 8

L
load-op . 7
load-source-op . 7

M
module . 11

O
oos . 6

operate . 6

OPERATION-ERROR . 13

S
source-file . 11

system . 11

SYSTEM-DEFINITION-ERROR 13

T
test-system-version . 7

Variable Index 22

Variable Index

central-registry . 1
compile-file-errors-behavior 14

compile-file-warnings-behaviour 14
system-definition-search-functions 8

	Using asdf to load systems
	Downloading asdf
	Setting up asdf
	Setting up a system to be loaded
	Loading a system

	Defining systems with defsystem
	The defsystem form
	A more involved example
	The defsystem grammar
	Serial dependencies
	Source location

	The object model of asdf
	Operations
	Predefined operations of asdf
	Creating new operations

	Components
	Common attributes of components
	Name
	Version identifier
	Required features
	Dependencies
	pathname
	properties

	Pre-defined subclasses of component
	Creating new component types

	Error handling
	Compilation error and warning handling
	Getting the latest version
	TODO list
	missing bits in implementation
	Inspiration
	mk-defsystem (defsystem-3.x)
	defsystem-4 proposal
	kmp's ``The Description of Large Systems'', MIT AI Memu 801

	Concept Index
	Function and Class Index
	Variable Index

